2 research outputs found

    Proceedings of Abstracts, School of Physics, Engineering and Computer Science Research Conference 2022

    Get PDF
    © 2022 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Plenary by Prof. Timothy Foat, ‘Indoor dispersion at Dstl and its recent application to COVID-19 transmission’ is © Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected] present proceedings record the abstracts submitted and accepted for presentation at SPECS 2022, the second edition of the School of Physics, Engineering and Computer Science Research Conference that took place online, the 12th April 2022

    Physics-based thermal management system components design for all-electric propulsion systems

    No full text
    Although electrification allows a significant reduction in fuel burn, noise, and emissions, one of the main challenges in this technology is to deal with the thermal loads generated by the electrified propulsion system components. This is to guarantee the safe and optimal operation of the propulsion system as well as the aircraft. This challenge needs to be addressed to enable this important technology to be adopted by aircraft manufacturers. This paper presents a methodological approach to calculate the heat load values generated by electric components in All-Electric Propulsion (AEP) architectures. Initially, the architecture of an AEP system will be presented and explained. Then, for each component, physics-based models based on associated heat loss mechanisms will be developed and presented. For this purpose, thermal models for battery packs, electric motors, inverters, and rectifiers are generated and a MATLAB/Simulink library is developed to calculate the thermal loads generated by each component at different working conditions. The developed models’ results are validated against publicly available data to confirm the effectiveness of the proposed approach. The simulation results confirm that the developed library is able to predict the thermal loads generated by lithium-ion battery packs, permanent magnet synchronous electric motors, multi-stage inverters, and rectifiers with less than 1%, 9.9%, 9.2%, and 0.5% errors respectively. Finally, an AEP architecture is simulated as the case study and the total heat loads generated by different components have been calculated at the design point to confirm the capability of the developed framework in system-level analyses
    corecore